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Abstract

This supplement provides details of extensive derivations in the linear-demand
model. Part 1 refers to the Cournot case and part 2 to the Bertrand case.
In part 1, first, equations (A.8)-(A.11) in appendix (proof of Corollary 1) are

derived. Second, Lemma A.1 (used for the proof of Proposition 2) is proven. Finally,
basic properties of the functions Di (total sales in stage 2 equilibrium) and Mi

(mark-up in stage 2 equilibrium), which are used for the discussion of Corollary 1,
are derived.
In part 2, first, equilibrium profits at stage 2 and mark-up, Πi and Mi, respec-

tively, are derived for the Bertrand-case. Then properties of these functions as
stated in section 4.2 are derived by providing both analytical and numerical results.
Finally, the positive relationship between product range and sales in the Bertrand
case is established.

1 Cournot case under linear demand

Derivation of (A.8): From (A.7),

Πi =
Ni(β − γ + γNi)Λ

2
i

Z2i
, (B.1)

where

Zi ≡ 2(β − γ + γNi) + [2(β − γ) + γNi]Φ−i. (B.2)
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Note that

Λi = (1 + Φ−i)αi −
X
j 6=i

αjΓj (B.3)

and

Φ−i =
X
h6=i

Γh =
X
h6=i

γNh
2(β − γ) + γNh

(B.4)

are independent of Ni. Also note that ∂Zi/∂Ni = γ(2 + Φ−i). Thus,

∂Πi
∂Ni

=
Λ2i
Z4i

½
(β − γ + 2γNi)Z

2
i −Ni(β − γ + γNi)2Zi

∂Zi
∂Ni

¾
=

Λ2i
Z3i
{(β − γ + 2γNi) [2(β − γ + γNi) + (2(β − γ) + γNi)Φ−i]−

2γNi(β − γ + γNi)(2 + Φ−i)}

=
Λ2i
Z3i
{2(β − γ + 2γNi)(β − γ + γNi)− 4γNi(β − γ + γNi) +

[(β − γ + 2γNi)(2(β − γ) + γNi)− 2γNi(β − γ + γNi)]Φ−i}

=
Λ2i (β − γ)

Z3i
{2(β − γ + γNi) + (2(β − γ) + 3γNi)Φ−i} > 0. (B.5)

Substituting (B.2) into (B.5) confirms (A.8). ¥

Derivation of (A.9): Using (A.8), one obtains

∂2Πi
∂N2

i

=
Λ2i (β − γ)

Z6i

½
(2γ + 3γΦ−i)Z

3
i − [2(β − γ + γNi) + (2(β − γ) + 3γNi)Φ−i] 3Z

2
i

∂Zi
∂Ni

¾
=

Λ2i (β − γ)γ

Z4i
{(2 + 3Φ−i)(2(β − γ + γNi) + (2(β − γ) + γNi)Φ−i)−

3 [2(β − γ + γNi) + [2(β − γ) + 3γNi]Φ−i(2 + Φ−i)]}

=
Λ2i (β − γ)γ

Z4i
{−2(β − γ + γNi) + Φ−i[6(β − γ + γNi) + 2(2(β − γ) + γNi)−

6(2(β − γ) + 3γNi)] + Φ2−i[3(2(β − γ) + γNi)− 3(2(β − γ) + 3γNi)]}

= −2Λ
2
i (β − γ)γ

Z4i
{β − γ + γNi + (β − γ + 5γNi)Φ−i + 3γNiΦ

2
−i} < 0. (B.6)

Substituting (B.2) into (B.6) confirms (A.9). ¥

Derivation of (A.10): First, note that, for all i, j ∈ I, j 6= i,
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∂Λi
∂Nj

=
2(β − γ)γ(αi − αj)

[2 (β − γ) + γNj]
2 (B.7)

and
∂Φ−i
∂Nj

=
∂Γj
∂Nj

=
2(β − γ)γ

[2 (β − γ) + γNj]
2 , (B.8)

according to (B.3) and (B.4), respectively; moreover, we have

∂Zi
∂Nj

=
2(β − γ)γ[2(β − γ) + γNi]

[2 (β − γ) + γNj]
2 , (B.9)

according to (B.2) and (B.8). Hence, using

Πi =
Ni(β − γ + γNi)Λ

2
i

Z2i
, (B.10)

one obtains, for j 6= i,

∂Πi
∂Nj

=
Ni(β − γ + γNi)

Z4i

½
2Λi

∂Λi
∂Nj

Z2i − Λ2i 2Zi
∂Zi
∂Nj

¾
=

4Ni(β − γ + γNi)Λi(β − γ)γSi,j
[2(β − γ) + γNj]2Z3i

, (B.11)

where

Si,j ≡ (αi − αj) [2(β − γ + γNi) + (2(β − γ) + γNi)Φ−i]− (2(β − γ) + γNi)Λi

= 2(αi − αj)(β − γ + γNi) + [2(β − γ) + γNi][(αi − αj)Φ−i − Λi]. (B.12)

Using (B.3), one finds

Si,j = 2(αi − αj)(β − γ + γNi)− [2(β − γ) + γNi](αjΦ−i + αi −
X
j 6=i

αjΓj)

= γNi(αi − αj)− [2(β − γ) + γNi]

Ã
αj(1 + Φ−i)−

X
j 6=i

αjΓj

!

= −[2(β − γ) + γNi]

"
(αj − αi)Γi + αj

Ã
1 + Γj +

X
h6=i,j

Γh

!
− αjΓj −

X
h6=i,j

αhΓh

#

= −[2(β − γ) + γNi]

"
αj

Ã
1 +

X
h6=j

Γh

!
−
X
h6=j

αhΓh

#
= −[2(β − γ) + γNi]Λj. (B.13)
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Substituting (B.2) and (B.13) into (B.12) confirms (A.10). ¥

Derivation of (A.11): From (A.8), by making use of (B.7) and (B.9), one obtains,

for j 6= i,

∂2Πi
∂Ni∂Nj

=
β − γ

Z6i
{{(2(β − γ) + 3γNi)(∂Φ−i/∂Nj)Λ

2
i +

[2(β − γ + γNi) + (2(β − γ) + 3γNi)Φ−i]2Λi
∂Λi
∂Nj

}Z3i −

Λ2i [2(β − γ + γNi) + (2(β − γ) + 3γNi)Φ−i]3Z
2
i

∂Zi
∂Nj

}

=
2(β − γ)2γΛi

Z4i [2(β − γ) + γNj]2
{2 (αi − αj) [2(β − γ + γNi) + (2(β − γ) + 3γNi)Φ−i]Zi +

ΛiZi(2(β − γ) + 3γNi)−

3Λi[2(β − γ + γNi) + (2(β − γ) + 3γNi)Φ−i](2(β − γ) + γNi)}

=
2(β − γ)2γΛi

Z4i [2(β − γ) + γNj]2
×

{2 (αi − αj) [2(β − γ + γNi) + (2(β − γ) + 3γNi)Φ−i]Zi + ΛiTi,j} , (B.15)

where

Ti,j ≡ [2(β − γ + γNi) + (2(β − γ) + γNi)Φ−i](2(β − γ) + 3γNi)− 3(2(β − γ) + γNi)×

[2(β − γ + γNi) + (2(β − γ) + 3γNi)Φ−i]

= −2 [(2(β − γ) + γNi)(2(β − γ) + 3γNi)Φ−i + 4(β − γ + γNi)(β − γ)] , (B.16)

i.e., Ti,j < 0. Substituting (B.16) into (B.15) yields (A.11). Hence, if αi ≤ αj, then

∂2Πi/∂Ni∂Nj < 0, j 6= i. ¥

Proof of Lemma A.1: First, note that αi = α implies Λi = α for all i. Thus, (A.8)

and the definition of W imply that ∂W/∂γ < 0 if
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0 > −Zi [2(β − γ + γNi) + (2(β − γ) + 3γNi)Φ−i] + (β − γ)×

{[2(Ni − 1) + (3Ni − 2)Φ−i] [2(β − γ + γNi) + (2(β − γ) + γNi)Φ−i]−

[(2(β − γ) + γNi)(∂Φ−i/∂γ) + 2(Ni − 1) + Φ−i(Ni − 2)]×

3 [2(β − γ + γNi) + (2(β − γ) + 3γNi)Φ−i]}, (B.17)

with Zi as defined in (B.2). Some tedios manipulations reveal that this condition can be

rewritten as

0 < 3 (β − γ) (∂Φ−i/∂γ)(2(β − γ) + γNi) [2(β − γ + γNi) + (2(β − γ) + 3γNi)Φ−i] +

4(β − γ + γNi) [4(β − γ + γNi) + 2 (β − γ) (Ni − 1)] +

8Φ−i [(β − γ) (Ni − 1)(β − γ + 2γNi) + γNi(β − γ + γNi)] +

Φ2−i
£
3γN2

i (2β − γ)− 4(β − γ)(β − γ + 2γNi)
¤
. (B.18)

Lemma A.1 holds if (B.18) is fulfilled in the case where Ni = N∗ for all i. Recalling that

Φ−i =
P

j 6=i Γj and Γj = γNj/ [2(β − γ) + γNj], and setting Ni = N∗, one finds

Φ−i =
γN∗(I − 1)

2(β − γ) + γN∗ and
∂Φ−i
∂γ

=
2βN∗(I − 1)

[2(β − γ) + γN∗]2
. (B.19)

Note that the second and third line of (B.18) are positive. Thus, using (B.19) implies

that a sufficient condition for (B.18) - when at Ni = N∗ for all i - is

0 <
6 (β − γ)βN∗(I − 1)
2(β − γ) + γN∗

∙
2(β − γ + γN∗) +

γN∗(I − 1) (2(β − γ) + 3γN∗)

2(β − γ) + γN∗

¸
+µ

γN∗(I − 1)
2(β − γ) + γN∗

¶2 £
3γ(N∗)2(2β − γ)− 4(β − γ)(β − γ + 2γN∗)

¤
. (B.20)

Straightforward algebra reveals that (B.20) is fulfilled, which confirms Lemma A.1. ¥
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Properties of Di(N,α, ·) and Mi(N,α, ·): In section 3, we decomposed prof-

its of a firm i in stage 2 equilibrium, Πi(N,α, ·), into the product between equilib-

rium demand, Di(N,α, ·) = NiXi(N,α, ·), and equilibrium mark-up, Mi(N,α, ·) =

(β − γ + γNi)Xi(N,α, ·). The following analysis formally derives the properties of these

two functions, Di(N,α, ·) and Mi(N,α, ·), which have been used in the discussion of

Corollary 2. We obtain the following results.

Corollary B.1. (Properties of Di(N,α, ·)). For all i, j ∈ I, j 6= i, we have

(i) ∂Di/∂Ni > 0 and ∂2Di/∂N
2
i < 0,

(ii) ∂Di/∂Nj < 0,

(iii) ∂Di/∂αi > 0, ∂Di/∂αj < 0,

(iv) ∂2Di/∂Ni∂αi > 0 and ∂2Di/∂Ni∂αj < 0, and

(v) if αi ≤ αj or if (αi − αj) sufficiently small, then ∂2Di/∂Ni∂Nj < 0.

Proof. First, note from (A.6) that ∂Xi/∂Ni = −λi,jXi/Ni, and thus, ∂Di/∂Ni =

Xi +Ni∂Xi/∂Ni = (1− λi,j)Xi, where

λi,j ≡
γNi (2 + Φ−i)

2(β − γ) (1 + Φ−i) + γNi (2 + Φ−i)
. (B.21)

Since λi,j ∈ (0, 1), we have ∂Di/∂Ni > 0. Moreover, ∂2Di/∂N2
i = (1 − λi,j)∂Xi/∂Ni −

Xi∂λi,j/∂Ni < 0, since ∂Xi/∂Ni < 0, λi,j ∈ (0, 1) and ∂λi,j/∂Ni > 0, according to (B.25).

This proves part (i) of Corollary B.1. To prove part (ii), note that ∂Di/∂Nj = Ni∂Xi/∂Nj,

j 6= i. Using (A.6), (B.7) and (B.8), it is straightforward to show that this implies

∂Di
∂Nj

= − 2γ(β − γ)NiSi,j

[2(β − γ) + γNj]
2 Z2i

, (B.22)

j 6= i, where Zi and Si,j are given by (B.2) and (B.12), respectively. According to (B.13),

we have Si,j < 0, thus, confirming ∂Di/∂Nj < 0, j 6= i. To prove part (iii) of Corollary

B.1, first, note that Xi = Λi/Zi, according to (A.6) and (B.2). Thus, part (iii) directly

follows from ∂Λi/αi > 0 and ∂Λi/αj < 0, j 6= i, according to (B.3), and the fact that

∂Di/∂αj = Ni∂Xi/∂αj. Recalling ∂Di/∂Ni = (1 − λi,j)Xi, part (iv) follows by similar

considerations, together with the fact that λi,j is independent of αi or αj, respectively,

according to (B.21). To prove part (v), first, note that ∂Di/∂Ni = 2(β−γ)Λi(1+Φ−i)/Z2i ,
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according to (B.2), (B.21) and Xi = Λi/Zi. Using this together with (B.7)-(B.9), one

obtains, after some manipulations, that, for j 6= i,
∂2Di

∂Ni∂Nj
=
4γ(β − γ)2Ni {(αi − αj)(1 + Φ−i)Zi − Λi [Φ−i(2(β − γ) + γNi) + 2(β − γ)]}

[2(β − γ) + γNj]
2 Z3i

.

(B.23)

Recalling that Λi > 0 in interior equilibrium confirms part (v). This concludes the proof

of Corollary B.1.

Corollary B.2. (Properties of Mi(N,α, ·)). For all i, j ∈ I, j 6= i, we have

(i) ∂Mi/∂Ni > 0 and ∂2Mi/∂N
2
i < 0,

(ii) ∂Mi/∂Nj < 0,

(iii) ∂Mi/∂αi > 0, ∂Mi/∂αj < 0,

(iv) ∂2Mi/∂Ni∂αi > 0 and ∂2Mi/∂Ni∂αj < 0, and

(v) the sign of ∂2Mi/∂Ni∂Nj is ambiguous.

Proof. First, note that we can write Mi = (β − γ + γNi)Λi/Zi since Xi = Λi/Zi.

Thus, using (B.2)-(B.4) leads to

∂Mi

∂Ni
=

γΛi(β − γ)Φ−i
Z2i

> 0. (B.24)

Moreover, since ∂Zi/∂Ni > 0, according to (B.2), (B.24) implies ∂2Mi/∂N
2
i < 0. This

confirms part (i) of Corollary B.2. In a similar fashion as in the proof of part (ii) of

Corollary B.1, one can also show that

∂Mi

∂Nj
= −2γ(β − γ)(β − γ + γNi)Si,j

[2(β − γ) + γNj]
2 Z2i

< 0, (B.25)

j 6= i. Part (iii) follows directly from recalling ∂Λi/αi > 0 and ∂Λi/αj < 0, j 6= i, together

with ∂Mi/∂αj = (β − γ + γNi)∂Xi/∂αj and Xi = Λi/Zi. Part (iv) follows from (B.24),

and, again, ∂Λi/αi > 0 and ∂Λi/αj < 0, j 6= i. Finally, using (B.24), together with

(B.7)-(B.9), one can show that, for j 6= i,
∂2Mi

∂Ni∂Nj
=
2γ2(β − γ)2 {(αi − αj)Φ−iZi + Λi [2(β − γ + γNi)− Φ−i(2(β − γ) + γNi)]}

[2(β − γ) + γNj]
2 Z3i

.

(B.26)

Unfortunately, for j 6= i, the sign of ∂2Mi/∂Ni∂Nj is ambiguous even for αi = αj. This

concludes the proof of Corollary B.2.
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2 Bertrand case under linear demand

Proposition C.1 (Equilibrium at stage 2 in Bertrand competition under (1)). In an

interior Bertrand-Nash equilibrium at stage 2, profits are given by

Πi =
Ni
³
β − γ + γ

P
j 6=iNj

´
h
2(β − γ) + γ

P
j 6=iNj

i2 µ Θi
1 +

P
iΩi

¶2
, (C.1)

where

Ωi ≡
γNi

³
β − γ + γ

P
j 6=iNj

´
(β − γ)

³
2(β − γ) + γ

P
j 6=iNj

´ (C.2)

and Θi ≡ αi
³
1 +

P
j 6=iΩj

´
−
P

j 6=i αjΩj.

Proof. First, note that πi =
P

k∈Ni(pk − ci)xk implies

∂πi
∂pk

= xk +
X
l∈Ni

(pl − ci)
∂xl
∂pk

, (C.3)

where
∂xl
∂pl

= − β − γ + γ(K − 1)
(β − γ)β − γ + γK

(C.4)

and, for l 6= k,
∂xl
∂pk

=
γ

(β − γ)β − γ + γK
(C.5)

according to demand structure (1). Thus, optimal behavior of firm i ∈ I at stage 2 is

given by the following set of first-order conditions (presuming an interior solution):

0 = xk − [αi − (β − γ)xk − γQ]
β − γ + γ(K − 1)
(β − γ)β − γ + γK

+

γ

(β − γ)β − γ + γK

X
l∈Ni\{k}

[αi − (β − γ)xl − γQ] , (C.6)

k ∈ Ni, where again Q =
P

l∈K xl. Imposing xk = Xi for all k ∈ Ni, it is straighforward

to show that (C.6) implies

Xi =
β − γ + γ(K −Ni)
2(β − γ) + γ(K −Ni)

αi − γQ

β − γ
. (C.7)
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Thus, as K − Ni =
P

j 6=iNj, using the definition of Ωi in Proposition C.1, we have

γNiXi = (αi − γQ)Ωi. Summing over all i ∈ I and using Q =
P

iNiXi, one obtains

γQ =

P
i αiΩi

1 +
P

iΩi
, (C.8)

and thus

αi − γQ =
Θi

1 +
P

iΩi
, (C.9)

where Θi is defined in Proposition C.1. Combining (C.7) and (C.9) yields

Xi =
β − γ + γ

P
j 6=iNj

2(β − γ) + γ
P

j 6=iNj

Θi

(β − γ) (1 +
P

iΩi)
. (C.10)

Now substitute both (C.9) and (C.10) into pk − ci = αi − γQ− (β − γ)Xi[= Mi], which

holds for all k ∈ Ni (compare with the proof of Proposition 1). This yields

Mi =
β − γ

2(β − γ) + γ
P

j 6=iNj

Θi

1 +
P

iΩi
(C.11)

Finally, noting that πi = NiXiMi and using (C.10) and (C.11) confirms Proposition C.1.

Lemma C.1. In an interior Bertrand-Nash equilibrium at stage 2, if αi is relatively

low, then mark-up Mi is decreasing in Ni. For instance, in a duopoly, ∂M1/∂N1 < 0 if

α1 ≤ α2.

Proof. Acording to (C.11), we have

∂Mi

∂Ni
=

β − γ

2(β − γ) + γ
P

j 6=iNj

∂Θi
∂Ni
(1 +

P
iΩi)−Θi

³
∂Ωi
∂Ni

+
P

j 6=i
∂Ωj
∂Ni

´
(1 +

P
iΩi)

2 . (C.12)

According to (C.1), ∂Ωi/∂Ni = Ωi/Ni > 0 and, for j 6= i,

∂Ωj
∂Ni

=
γ2Nj³

2(β − γ) + γ
P

h6=j Nh
´2 > 0. (C.13)

Moreover, from the definition ofΘi, we have ∂Θi/∂Ni = αi
P

j 6=i ∂Ωj/∂Ni−
P

j 6=i αj∂Ωj/∂Ni.

Hence, if αi is relatively low, or in case of dupoly if αi ≤ αj, then ∂Θi/∂Ni ≤ 0 and thus

∂Mi/∂Ni < 0. This concludes the proof.
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Derivation of ∂2Π1/∂N1∂α1 and ∂2Π1/∂N1∂α2: Proposition C.1 implies for the

duopoly case that

Π1 =
(β − γ + γN2)N1
(2(β − γ) + γN2)2

α1 + (α1 − α2)Ω2
1 + Ω1 + Ω2

(C.14)

where

Ω1 =
γN1(β − γ + γN2)

(β − γ)(2(β − γ) + γN2)
and Ω2 =

γN2(β − γ + γN1)

(β − γ)(2(β − γ) + γN1)
. (C.15)

From this, it is straightforward to show that

∂Π1
∂N1

=
(β − γ + γN2) [α1 + (α1 − α2)Ω2]

(2(β − γ) + γN2)2
×

{(α1 − α2)[2N1(1 + Ω1)∂Ω2/∂N1 + Ω2(1 + Ω2 − Ω1)] +

α1[1 + Ω2 − Ω1 − 2N1∂Ω2/∂N1]} (C.16)

Recall that ∂Ω2/∂N1 > 0, according to (C.13). Thus, if α1 = α2, then 1 +Ω2−Ω1 > 0 is

a necessary condition for ∂Π1/∂N1 > 0 to hold. One can now rewrite (C.16) as

∂Π1
∂N1

=
(β − γ + γN2) [α1 + (α1 − α2)Ω2]

(2(β − γ) + γN2)2
×

{α1 [(1 + Ω2)(1 + Ω2 − Ω1) + 2N1Ω1∂Ω2/∂N1]−

α2[2N1(1 + Ω1)∂Ω2/∂N1 + Ω2(1 + Ω2 − Ω1)]}. (C.17)

Hence, ∂2Π1/∂N1∂α1 > 0 and ∂2Π1/∂N1∂α2 < 0 if 1 + Ω2 − Ω1 > 0. This confirms

the claim in section 4.2 that, in the neighborhood of a symmetric equilibrium, we have

∂2Π1/∂N1∂α1 > 0 and ∂2Π1/∂N1∂α2 < 0. ¥

Numerical Analysis: Specifying α1 = α2 = 10, it is easy to show from (C.14) and

(C.15) that

∂Π1
∂N1

=
100 (β − γ + γN2)

³
1 + γN1(β−γ+γN2)

(β−γ)(2(β−γ)+γN2) −
γN2(β−γ+γN1)

(β−γ)(2(β−γ)+γN1) −
2γ2N1N2

(2(β−γ)+γN1)2

´
(2(β − γ) + γN2)2

³
1 + γN1(β−γ+γN2)

(β−γ)(2(β−γ)+γN2) +
γN2(β−γ+γN1)

(β−γ)(2(β−γ)+γN1)

´3 .

(C.18)

The following graphs illustrate ∂Π1/∂N1 as function of N1 and N2, respectively. We

start with specifications β = 10 and γ = 1 and examine whether ∂Π1/∂N1 > 0 and

∂2Π1/∂N
2
1 < 0 for various product ranges of the rival firm, N2.

10



0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

20 40 60 80 100

∂Π1
∂N1

for N2 = 1, β = 10, γ = 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

20 40 60 80 100

∂Π1
∂N1

for N2 = 2, β = 10, γ = 1

0

0.05

0.1

0.15

0.2

0.25

20 40 60 80 100

∂Π1
∂N1

for N2 = 10, β = 10, γ = 1

11



-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

100 200 300 400 500

∂Π1
∂N1

for N2 = 50, β = 10, γ = 1

The preceding graphs suggest that ∂Π1/∂N1 > 0 and ∂2Π1/∂N2
1 < 0 ifN2 is sufficiently

small or if N1 is high enough. For instance, ∂Π1/∂N1 > 0 and ∂2Π1/∂N
2
1 < 0 hold for all

N1 if N2 ≤ 10, but for N2 = 50 only if N1 is high.

Next, consider ∂Π1/∂N1 as function of N2, holding N1 constant.
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One thus finds that ∂2Π1/∂N1∂N2 < 0 whenever ∂Π1/∂N1 > 0. Hence, the same

conditions which lead to an incentive to launch new varieties also ensure negatively sloped

reaction functions at stage 1, confirming the claims in the main text (section 4.2).

Now let us consider β = 2 and still keep γ = 1.
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Unsurprisingly, the incentive to launch varieties is lower if β = 2 than if β = 10, as

products are better substitutable in the former case. But the conclusions from the case

β = 10 drawn above remain valid.

Proof that if α1 > α2 implies N∗
1 > N

∗
2 , then it also implies D

∗
1 > D

∗
2: First,

recall that Di = NiXi when all varieties within a firm’s product line are produced in same

quantity. Thus, using (C.8),

D1 =
N1 (β − γ + γN2)

2(β − γ) + γN2

Θ1
(β − γ) (1 + Ω1 + Ω2)

,

D2 =
N2 (β − γ + γN1)

2(β − γ) + γN1

Θ2
(β − γ) (1 + Ω1 + Ω2)

. (C.19)

Hence, we have D1 > D2 if, for instance, Θ1 > Θ2 and

β − γ + γN2
2(β − γ) + γN2

≥ β − γ + γN1
2(β − γ) + γN1

. (C.20)

It is easy to confirm that (C.20) holds if and only if N1 ≥ N2. Moreoover, analogously to

(A.16) derived in the proof of Proposition 4, one can show from the definition of Θi that

Θ1 −Θ2 = (α1 − α2) (1 + Ω1 + Ω2) , (C.21)

i.e., Θ1 > Θ2 if α1 > α2. Thus, if α1 > α2 implies N∗
1 > N

∗
2 , then it also implies D

∗
1 > D

∗
2,

as claimed in section 4.2. ¥
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