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Abstract

This supplement provides details of extensive derivations in the linear-demand
model. Part 1 refers to the Cournot case and part 2 to the Bertrand case.

In part 1, first, equations (A.8)-(A.11) in appendix (proof of Corollary 1) are
derived. Second, Lemma A.1 (used for the proof of Proposition 2) is proven. Finally,
basic properties of the functions D; (total sales in stage 2 equilibrium) and M;
(mark-up in stage 2 equilibrium), which are used for the discussion of Corollary 1,
are derived.

In part 2, first, equilibrium profits at stage 2 and mark-up, II; and M;, respec-
tively, are derived for the Bertrand-case. Then properties of these functions as
stated in section 4.2 are derived by providing both analytical and numerical results.
Finally, the positive relationship between product range and sales in the Bertrand
case is established.

1 Cournot case under linear demand

Derivation of (A.8): From (A.7),
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Note that

Ai= (14 @ )i — Y _ayT; (B.3)
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and
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are independent of N;. Also note that 0Z;/0ON; = v(2 + ®_;). Thus,

o1, A?

0Z;
N~ 24{(5 ¥+ 2yN;) 22 — Ni(B 7+7N’)2ZZ_8NZ}

A (8= 7+ 2N) (8 =7+ 1N) + (28— 7) + NP -

29N;(B—~v+yN;)(2+ D)}

A?
= 2_3{2(5 — 7+ 2yNy) (B — v +yNs) — 4yNy(B — v+ vN;) +

(8 =7+ 29N (2(8 — ) +YNi) = 2yNi(B — v + yNi)| @i}

— —AWZ; 7) {28 =7+ vN;) + (2(8 —7) + 3yN;) _;} > 0. (B.5)

Substituting (B.2) into (B.5) confirms (A.8). W

Derivation of (A.9): Using (A.8), one obtains

22_]\125 _ % {(27 +37P_3)ZF — 2(8 — v +N;) + (2(8 — ) + 3y N;) D_4] 3Zf§ff }
- LWZZ 7)7{(2 +30)(2(8 — v +N) + (2(8 =) + yVi) i) —
3[2(8 I YN:) + [2(8 — ) + 3yNi]@_i(2 + @_;)]}
_ w{_zw — Y+ YN + D [6(8 — 7 + YNy +2(2(8 — ) +YN;) —
6(2(8 - v) + 3yN)] + @%,[3(2(8 — 7) + vNi) — 3(2(B — ) + 37N,)]}
_ _2/\3(52—;7)7{5_7+7Ni+ (B —~+5yN;)®_; + 3yN; 9, } < 0. (B.6)

Substituting (B.2) into (B.6) confirms (A.9). W

Derivation of (A.10): First, note that, for all 7,5 € Z, j # 1,
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(B.7)
ON;  [2(8—7)+N,]’
and
0®_; oy _ 2(8 — )y (B.8)
ON;  ON;  [2(8 =)+ Ny
according to (B.3) and (B.4), respectively; moreover, we have
0Zi _ 28— )v[2(8 =) +Ni (B.9)
ON; 28— +yN)*
according to (B.2) and (B.8). Hence, using
Ni(B =4 +Ni)A
1, = M= T ANON, (B.10)
one obtains, for j # i,
ON; zZ} aN 4 aN
AN,(3 — VA, |
— Z(/B ’7 + 7N1>Al(ﬂ ’7) ] , (B.]_l)

2(8 =) + YN, *Z}

where

Sij = (=) [2(8 =5 +yNi) + (28 =) +yNi) @] — (2(8 — ) +yNi) A
= 2(0%' - aj)(ﬁ -+ WNz') + {2(5 - 7) + W’Nz‘]K%’ - aj)q)—z' - Ai]- (B-12)

Using (B.3), one finds

Sii = 200 —ay)(B—7+vNi) = 28— ) + YN (@i + s — Y _a;T))

J#i
= yNi(a; —aj) — [2(8 — ) + YNi] (aj (1+d ;) — Zozj )
J#i
= —[2(6 - ’7) + ’)/NZ] (aj — ai)Fi + Q; (1 + Pj + ZFh> Oé] ZahFh]
L h#i,j h#i,j
= —[2(8—7)+Ni] | (1 + ZW) - Zahrh]
h#j h#j
— —[2(B—7) +yNiA;. (B.13)



Substituting (B.2) and (B.13) into (B.12) confirms (A.10). W

Derivation of (A.11): From (A.8), by making use of (B.7) and (B.9), one obtains,
for j # 1,
P, f-

_ v B | .
INON, 7 {{2(8 =) +3YN;)(9D_; JON;)A] +

208 — v+ 7Ni) + (2(8 — ) + 37 Ni) 2 ]2A,

OA;
dN,

A22(8 — v +vN;) + (2(8 — ) + 3yN;)®_;]322 0Z;

2B =)
= TR —) 1N 2@ T ) OBy N + (8 ) + 37N @] Z +
A

(
iZi(2(8 =) +37N;) —

BN[2(8 — v +Ni) + (2(8 — ) + 3y Ni)@ 3] (2(8 — v) + Vi) }
2(8 = 7)*A
ZH2(8 — ) + yNjJ2
{2(0s — ) [2(8 — v + 7o) + (2(8 — 7) + 37 Ni) @] Zi + AT} (B.15)
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where

e
Il

2(8 =y +Ni) + (2(8 =) + ¥ N) @3] (2(8 — ) + 3vNi) = 3(2(8 — ) + Vi) X
2(8 — v +7N;) + (2(8 — ) + 37N;)P_;]
= =2[2(8 =) +7N:)(2(8 =) +3yNi)®_; +4(8 — v +vN:i) (B — )], (B.16)

ie., T;; < 0. Substituting (B.16) into (B.15) yields (A.11). Hence, if oy < «;, then

Proof of Lemma A.1: First, note that o; = o implies A; = « for all i. Thus, (A.8)
and the definition of W imply that 0W /0y < 0 if



0 > =Z2(8—7+vN:)+ 28 —7) +3yN;)) ] + (B8 —7) x
{2(Ni = 1) + (BN; = 2)@_] [2(8 — v +YNi) + (2(8 —7) + ¥ Ni) @] —
[(2(8 — ) +yN;)(0P_;/Oy) + 2(N; — 1) + ®_;(N; — 2)] x
3[2(8 = v +Ni) + (2(8 — 7) + 37N;) @i}, (B.17)

with Z; as defined in (B.2). Some tedios manipulations reveal that this condition can be

rewritten as

0 < 3(8—=7)(0D-/07)(2(8 =) +¥Ni) [2(8 = v +Ni) + (2(8 = 7) + 37NV;) D3] +

4B =7+ AN) 4B =7 +N;) +2(8—7) (N; = )] +

8 [(B—7) (Ni = 1)(B — v+ 2yNy) +yN;(B — v +yN;)] +

@2, [3YNZ(26 — ) — 4(B —=)(B — v +27Ny)] . (B.18)
Lemma A.1 holds if (B.18) is fulfilled in the case where N; = N* for all i. Recalling that
®_; =Y, ,,Tjand T; = yN;/ [2(3 — 7) + ¥N], and setting N; = N*, one finds

N*(I 1) 0d_;  2BN*(I-1)
®-i= 305 = : B.
2(8 —v) + N~ o oy 208 — ) + YN (B.19)

Note that the second and third line of (B.18) are positive. Thus, using (B.19) implies

that a sufficient condition for (B.18) - when at N; = N* for all 7 - is

6(8 1) BN~ 1) o AN 1) (8 =) +3N°)
e [QW_WVNH 2(6 =) +N*
(s ) B P@s -y -4 -G -+ 287 B2

Straightforward algebra reveals that (B.20) is fulfilled, which confirms Lemma A.1. B



Properties of D;(N,«, ) and M;(N,a,-): In section 3, we decomposed prof-
its of a firm ¢ in stage 2 equilibrium, I;(N, e, ), into the product between equilib-
rium demand, D;(N,a, ) = N;X;(N,er,-), and equilibrium mark-up, M;(N,a,-) =
(8 —~v+vN;)X;(N, e, -). The following analysis formally derives the properties of these
two functions, D;(N, e, -) and M;(N, e, ), which have been used in the discussion of

Corollary 2. We obtain the following results.

Corollary B.1. (Properties of D;(N, e, -)). For all i,j € Z, j # i, we have

(i) dD;/ON; > 0 and 9*D;/ON? < 0,

(it) 0D;/ON; < 0,

(iii) 0D;/0a; > 0, 0D;/0c; < 0,

(iv) 8*D;/ON;0c; > 0 and 8*D;/ON;0c; < 0, and

(v) if a; <aj orif (o — ) sufficiently small, then 8*D;/ON;0N; < 0.

Proof. First, note from (A.6) that 0X;/ON; = —\,;;X;/N;, and thus, 0D;/0N; =
X; + N;0X;/ON; = (1 — \; ;) X;, where

YN; 2+ D)

208 —7) (14 2-) +yNi (24 @)
Since A;; € (0,1), we have dD;/ON; > 0. Moreover, 3°D;/ON? = (1 — X\;;)0X;/ON; —
X0\ j/ON; <0, since 0X;/ON; <0, \;; € (0,1) and 9, j/ON; > 0, according to (B.25).
This proves part (i) of Corollary B.1. To prove part (ii), note that 0D;/0N; = N;0X;/0N;,

Aij

(B.21)

j # 1. Using (A.6), (B.7) and (B.8), it is straightforward to show that this implies
ON; 2(8 =) +N;I” Z;

J # i, where Z; and S; ; are given by (B.2) and (B.12), respectively. According to (B.13),

we have S; ; < 0, thus, confirming 0D;/0N; < 0, j # i. To prove part (iii) of Corollary
B.1, first, note that X; = A;/Z;, according to (A.6) and (B.2). Thus, part (iii) directly
follows from OA;/c; > 0 and OA;/a; < 0, j # i, according to (B.3), and the fact that
0D,;/0a; = N;0X;/0c;. Recalling 0D;/ON; = (1 — \;;)X;, part (iv) follows by similar
considerations, together with the fact that ), ; is independent of «; or «;, respectively,

according to (B.21). To prove part (v), first, note that dD;/ON; = 2(3—~)\;(1+®_;)/Z2,
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according to (B.2), (B.21) and X; = A;/Z;. Using this together with (B.7)-(B.9), one
obtains, after some manipulations, that, for j # 4,

0”D;i (B =) Ni{(ai —ay)(1+ P_5)Zi — Ay [P_i(2(8 — ) +yNi) +2(8 — )]}
ON:ON; 208 =) +N;* 2}

(B.23)
Recalling that A; > 0 in interior equilibrium confirms part (v). This concludes the proof

of Corollary B.1. =

Corollary B.2. (Properties of M;(N, «v,-)). For all i,j € T, j # i, we have

(i) OM;/ON; > 0 and 0*M;/ON? < 0,

(it) OM;/ON; <0,

(iii) OM,;/Oc; > 0, OM,;/0c; < 0,

(iv) 9> M;/ON;0c; > 0 and 9*M,;/ON;0c; < 0, and

(v) the sign of 9*M;/ON;ON; is ambiguous.

Proof. First, note that we can write M; = (8 — v + vN;)A\;/Z; since X; = A;/Z;.
Thus, using (B.2)-(B.4) leads to

OM; _ ’YAz'(ﬁ - V)q)fi
ON; Zf

Moreover, since 0Z;/ON; > 0, according to (B.2), (B.24) implies §°M;/ON? < 0. This

> 0. (B.24)

confirms part (i) of Corollary B.2. In a similar fashion as in the proof of part (ii) of

Corollary B.1, one can also show that

oM 29(B =B =7 +7Ni)Si;
ON; 2067 NPz " .

J # i. Part (iii) follows directly from recalling OA;/c; > 0 and OA;/c; < 0, j # i, together
with OM;/0a; = (8 — v+ yN;)0X;/0a; and X; = A;/Z;. Part (iv) follows from (B.24),
and, again, 0A;/a; > 0 and OA;/o; < 0, j # 4. Finally, using (B.24), together with
(B.7)-(B.9), one can show that, for j # 1,

PM; 2B —9)* {(ow — o) PiZi + Ai [2(8 — v + 7Ni) — P_i(2(8 — 7) +vNi)]}
ONiON; [2(8 =) + N, Z} |

(B.26)
Unfortunately, for j # i, the sign of 9*M;/ON;0N; is ambiguous even for o; = «;. This
concludes the proof of Corollary B.2. =



2 Bertrand case under linear demand

Proposition C.1 (Equilibrium at stage 2 in Bertrand competition under (1)). In an

interior Bertrand-Nash equilibrium at stage 2, profits are given by

N; (ﬂ =Y+ NJ‘) O, 2
I - (eq) c)
28— 7) +7 N o
where
Y N; (ﬁ =YY Nj)
Q= (C.2)
(8 =) (208 =) +7 55 )
and @1 =y (1 + Zg;éz QJ> — Z];ﬁz Oéij.
Proof. First, note that m; = Zke N; (pr — c¢i)xx implies
am 0:171
=+ Ci) o> C.3
Opn k IEZNi(Pl )0pk (C.3)
where
opi (B=MB—7+7K
and, for [ # k,
ox; _ v (C.5)

Opr (B=7B—7+7K

according to demand structure (1). Thus, optimal behavior of firm i € Z at stage 2 is
given by the following set of first-order conditions (presuming an interior solution):
B—y+(K-1)

B=B—7+9K

g N |
G=F -k 2 [0~ P e, (o)

0 = xk—[ai—(ﬁ—V)xk_'YQ]<

k € N;, where again Q = Y, ;. Imposing z, = X; for all k € N, it is straighforward
to show that (C.6) implies

B=v+y(K—-N;) a;—~Q 1)

MR KN Fo



Thus, as K — N; = ). i Nj, using the definition of §2; in Proposition C.1, we have
YN X; = (a; — Q) Q;. Summing over all ¢ € 7 and using Q = >, N;X;, one obtains

_ Zl aifY;
and thus
Q=2 (©9)
7 1+5,97 '
where ©; is defined in Proposition C.1. Combining (C.7) and (C.9) yields
—~+ . N; -
X; = =72y ©; (C.10)

2(8 =) "”YZj;éiNj (B =) (1+32Q)
Now substitute both (C.9) and (C.10) into px — ¢; = a; — YQ — (6 — v) Xi[= M;], which

holds for all k¥ € N; (compare with the proof of Proposition 1). This yields

M= C.11
208 =)+ 2 N 1420, (C.11)

Finally, noting that m; = N;X;M; and using (C.10) and (C.11) confirms Proposition C.1.

Lemma C.1. In an interior Bertrand-Nash equilibrium at stage 2, if «; is relatively
low, then mark-up M; is decreasing in N;. For instance, in a duopoly, OM,/ON; < 0 if
aq S Ay.

Proof. Acording to (C.11), we have

2 (14 5,2) -0 (5 + 5w

oM, B—
= . C.12
ON;  2(B—17)+7 Zj;ﬁi N; (14> Qz) ( )
According to (C.1), 0€;/ON; = Q;/N; > 0 and, for j # i,
an . ’72Nj
N, 5 > 0. (C.13)

(2(5 =) YDy Nh)

Moreover, from the definition of ©;, we have 00;/0N; = a; y ;080 /ON;—> ., ;08); /ON;.

J#i
Hence, if o is relatively low, or in case of dupoly if o; < a;, then 00,;/0N; < 0 and thus
OM;/ON; < 0. This concludes the proof. m



Derivation of 9°I1;/0N,0a; and 0%I1;/ON;0cas: Proposition C.1 implies for the

duopoly case that
(B =7+ vN2) Ny o + (1 — an) 2y

() ) A R e R o3 (C14)
where
Ni(B — v+ vNa) YNo(B — v +7N1)
0 =1 dQ, = . C.15
N T By ey A 1 e 77y e vy R
From this, it is straightforward to show that
o, (B—7y+Na) [ + (o — aa) )]
ON, (2(8 =) +7N2)?
{(a1 — CYQ)[QN1<1 + 91)892/8N1 + 92(1 + Qg — Ql)] +
(1/1[1 + QQ - Ql — 2N1892/8N1]} (016)

Recall that 0 /9N; > 0, according to (C.13). Thus, if a; = g, then 1 +Qy — Q) > 0 is

a necessary condition for 0II; /ON; > 0 to hold. One can now rewrite (C.16) as
Ol (B=y+7No)[an + (o1 — az)(y]
ON (208 =) +7N2)?
{Ozl [(1 + Qg)(l + QQ - Ql) + 2N1918Q2/8N1] —

042[2N1(1 + 91)892/8]\]1 + Qg(l + Qg — Ql>]} (Cl?)

Hence, 0%11;/ON10a; > 0 and 0*I1;/ON10as < 0 if 1+ Qy — Q; > 0. This confirms
the claim in section 4.2 that, in the neighborhood of a symmetric equilibrium, we have

82H1/8N18061 > (0 and 821_[1/8]\718@2 <0. 1

Numerical Analysis: Specifying a; = as = 10, it is easy to show from (C.14) and

(C.15) that

_ YN1(B—y+yN2)  _ _ yN2(B—y+yN1) 29NN
on, 10008 =7+ M) <1 T ECEDTN) T BB (2(&@%131)2)
ON;

3
—_ 2 YN1(B—y+7N2) N2 (B—y+yN1)
(2(6 =) +7Na) <1 T EeE N T (ﬂﬂ)@(ﬂﬂ)ﬂNﬂ)

(C.18)
The following graphs illustrate 011 /ON; as function of N; and Ny, respectively. We
start with specifications § = 10 and v = 1 and examine whether 0II;/ON; > 0 and

0?11, /ON? < 0 for various product ranges of the rival firm, Ny.
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The preceding graphs suggest that 11, /ON; > 0 and §%I1; /ON? < 0if Ny is sufficiently
small or if Ny is high enough. For instance, 0I1; /ON; > 0 and 9°I1; /ON? < 0 hold for all
N if Ny < 10, but for Ny = 50 only if Ny is high.

Next, consider 01I; /ON; as function of Ny, holding N; constant.

1.8]
1.69
1.4
1.2

0.8]
0.67
0.4
0.29

0 20 40 60 80 100

Sa-for Ny=1,8=10,7=1

12



2 60 80 100

SN for Ny =2,8=10,y=1

0.37

0.2

0.1

o

20 60 80 100 120 140

o for Ny =10, =10,y =1

0.02;
0.018]
0.016]
0.014]
0.012]

0.0
0.008;
0.006;
0.004]
0.002;

-0.0024

20 40 6l 140 160 180 200

o for Ny =50, =10,y =1

13




One thus finds that 9211, /ON;0N, < 0 whenever 011, /ON; > 0. Hence, the same
conditions which lead to an incentive to launch new varieties also ensure negatively sloped
reaction functions at stage 1, confirming the claims in the main text (section 4.2).

Now let us consider 3 = 2 and still keep v = 1.
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0.013
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Unsurprisingly, the incentive to launch varieties is lower if 3 = 2 than if § = 10, as
products are better substitutable in the former case. But the conclusions from the case

[ = 10 drawn above remain valid.

Proof that if o; > o, implies N > N, then it also implies D} > D;: First,
recall that D; = N;X; when all varieties within a firm’s product line are produced in same

quantity. Thus, using (C.8),

D, Ny (B —~+7Ny) 6,
208—=79) 4+ N2 (B—7) (1 +Q +Qy)’
Ny (8 — v +vNy1) O,
D ) C.19
’ 208 =) +vN1 (B—7) (1 + Q1+ Q) ( )
Hence, we have D > D, if, for instance, ©; > O, and
Byt aNe  B-v+M (C.20)

2(8—7) +N2 ~ 2(8 =) + N
It is easy to confirm that (C.20) holds if and only if N; > Ny. Moreoover, analogously to
(A.16) derived in the proof of Proposition 4, one can show from the definition of ©; that

@1 — @2 = (041 - 042) (1 + Ql + Qg) N (021)

ie., ©1 > Oqif oy > . Thus, if a3 > ay implies N > N3, then it also implies D} > D3,

as claimed in section 4.2. B
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